If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-40=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| 3/4z=15/4 | | 3(m–4)+m=2(m–6) | | (15+1)1.6=3x-2 | | |6x-10|=52 | | k^2=69 | | 2.5/18=z/36 | | 9p+3.2=-104.8 | | 9x+1=7x+3=180 | | −4(u+6)=2(3u−4) | | 1+14x=95 | | 3(n+9)=51 | | 1/2(8x^2-10x-3)=0 | | (x+1)1.6=3x-2 | | w^2+13=13 | | X-1=-7x-9 | | 3(x–5)=2x+4 | | 66x+3=111 | | 16/6=3d/18 | | −3x − 5 = 16 | | |2x+3|=33 | | N=5,n2-2n+n | | 11x+26=55 | | 4n+45-9n=30 | | p^2+77=0 | | 11x+36=55 | | x3/8=48 | | 8.6x+2.2(2x—5)=54 | | 4n+10-9+2n=43 | | 3(g-4)=30 | | 2(x+3)=-8x-44 | | 3+x=5-2+x | | 2x+32=3x-3 |